International Agreement for Control of Cyber Weapons

Month: March, 2017

USA –– The World’s Cyber Superpower

A Cyber Superpower

The United States of America is the World’s cyber superpower.

History shows that the revolution in computing and information technology started not in the United States, but instead in England. But as the onslaught of the Second World War began to dim the starched and crusty sun of the British Empire, the world’s center of computing innovation shifted to the United States, and has never left. Today, the United States has emerged as the world’s cyber superpower. No other country comes close, in fact, the rest of the world added up together does not equal the cyberpower of the United States. Nevertheless, with cyber-greatness, comes cyber-vulnerability, and thus the United States faces many challenges going forward.

Technology Growth and Innovation

Birth of Computing. The foundations of computing were defined by Alan Mathison Turing (1912-1954), an English mathematician in his paper “On Computable Numbers, with an Application to the Entscheidungsproblem” delivered to the London Mathematical Society in 1936. After a long discussion, he writes “If this is so, we can construct a machine to write down the successive state formulae, and hence to compute the required number.” (Don’t try to read the paper unless you know a great deal of math.  A better explanation is found in Andrew Hodges book “Alan Turning: The Enigma“.)

Turing was recruited to work at Bletchley Park, the center of the UK’s codebreaking operation during the Second World War. The central challenge was learning how to break the enigma coding machine. Turing and his team built the world’s first electro-mechanical machine to break the code (bomba kryptologiczna [Polish]). Eventually the German Navy deployed an improved enigma machine with more coding rotors. This blunted the English effort.

Nevertheless, the United States Naval Computing Machine Laboratory at a secret location in Dayton, Ohio started work on a more advanced code-breaking machine using vacuum tubes. You can see a picture of the U.S. Navy Cryptanalytic Bombe at the National Security Agency’s (NSA) National Cryptologic Museum here. The Museum has a picture of coding rotors on its facebook page here. This project was located in “Building 26” on the campus of the National Cash Register Machine company. This is where the future founder of IBM worked.

Growth of Computing. The history of computing is long, but most of the book was written in the United States. In particular, the release of the IBM System 360 included the first operating system. Mainframe computers, minicomputers, personal computers, handheld computers, integrated circuits, and so on. Much of this evolution was powered by companies in Silicon Valley, but also around Route 128 in Boston. As a note, much work in development of supercomputers was funded by NSA, especially the work of Seymour Cray.

Telecommunications and Networking. Most of the world’s innovation in telecommunications and networking has occurred in the United States. There is no need here to retell the long history of developments: Telegraph, Telephone, Radio & Television, Satellite, Internet, Mobile Cellular Technology. (See Desmond Chong’s comments here.) The Internet now connects most citizens of the world. (See: Internet Society report here.) From 1992 to 2015, the number of websites grew from 10 to 863,105,652 and from 1993 the number of Internet Users grew from 108,935 to 3,185,996,155. (See Internet Live Stats.)

This growth of “cyberspace” in effect has created an entirely new virtual geography for conflict between nation states.

Control of Cyber Infrastructure. Apart from manufacturing much of the technology, US companies produce the software, cloud systems, other Internet based services, and social media systems that dominate the world. There is no European Google, for example. Companies such as Google, Facebook, Twitter, Microsoft, IBM, Apple and others dominate the world’s ICT landscape.

Emergency Response to Cyber Attacks

In the Post-9/11 world, the United States has built up and incredible infrastructure to defend against terrorism and respond to it promptly once it occurs.  These investments envision threats from weapons of mass destruction, lone wolf terrorist attacks, Electromagnetic Pulse (EMP), and cyber attacks. A few days after the September 11th attack, the US Congress handed over to the executive $40 billion dollars to “get started” on building these defensive systems. Then it wrote another check and another. The total amount invested is classified.

Investments were made in two direction; foreign intelligence, and emergency response in the homeland.  Although the development of foreign intelligence capabilities using cyber espionage is secret, revelations from illegal criminal leaks published by the traitor Edward Snowden and the brutal Wikileaks, plus high quality yet legal investigative reporting by authors such as Dana Priest and William M. Arkin (Top Secret America: The Rise of the New American Security State) suggest the incredible capabilities of the United States.

  • A large amount of all Internet traffic worldwide is intercepted, stored, and subjected to analysis by organizations such as the National Security Agency (NSA).
  • A large amount of telephony traffic is intercepted and stored, then used for analysis of a number of problems.
  • Breakthroughs in artificial intelligence and other innovations in software have greatly expanded the effectiveness of intelligence analysis (although there are constant complaints that much more information is being collected than can be analyzed).
  • In response to the threat of terrorism, the USA has greatly increased the integration of law enforcement and intelligence gathering and analysis by building fusion centers linking local and state resources (police; emergency response) into the Federal Government.
  • The U.S. Military has been tasked with responding to threats that occur within the United States (and this requires it to collect and analyze threat data originating from within the country).

To put it in simple terms, apart from its not inconsiderable activities overseas, the United States has trained its military to fight, defend infrastructure, and collect intelligence within the United States itself.

Result: There has been a blurring of lines of responsibility between local, state, and Federal efforts to fight a cyber war.

The result is a nation state with dominant cyberpower:

  1. Control over the bulk of cyber technology.
  2. Largest and most sophisticated intelligence collection and analysis systems.
  3. World wide response capabilities, both kinetic and cyber, both offensive and defensive.
  4. The largest penetration into cyber networks around the world.
  5. Highest level of integration between cyber intelligence and cyber response.

Since 9/11, the United States in the cyber arena likely has invested more than 25 times as much as any nation that is in a distant second place. There is a cyber arms race, and the United States is winning, and will continue to do so for the foreseeable future (providing it keeps investing, as it probably will).

What is “Cyber Power”?

It is difficult to have an undisputed definition of cyberpower, but as a starting point, we can say that for a nation state, it may be defined by the following factors:

  1. w1 – The number of cyber-weapons deployed and under the control of the nation-state.
  2. w2 – The percentage of zero day cyber weapons deployed and under the control of the nation-states.
  3. p1 – The maximum number of cyber warfare operators per capita that are on duty under peak deployment.
  4. p2 – The maximum number of volunteer or militia cyber warfare operators that may be deployed to support the government.
  5. Rg – The number of websites that may be attacked by government cyber fighters.
  6. Rp – The number of websites that may be attacked by militia cyber warfare operators.
  7. e1 – The number of emergency response centers dedicated to monitoring cyber attacks and coordinating response.
  8. e2 – The number of emergency response centers with cyber-response capabilities.
  9. e3 – The number of emergency response centers with capabilities to respond to secondary targets of a cyber attack, e.g., infrastructure damage, but with no cyber capabilities.

Cyberpower might be estimated as follows:

(9[w2w1]+[w1-9{w2w1}]+3.5p1+p2) * (Rg+.6Rp) + (.9e1+.4e2+.15e3)

Getting this type of data, applying proper quantification and operationalization of the relationships, however, is somewhat problematical, to say the least.

Lingering Challenges Going Forward

Government and Private Sector Coordination. The United States has a peculiar arrangement whereby the government is responsible for defense of the nation, but is unable to control how private enterprises, and the private sector in general, avails itself of defensive technologies. The private sector is left to defend itself.  For example, Under the National Security Agency (NSA), the Cyber Command (“Cybercom”) component is responsible for development of both offensive and defensive cyber weapons. However, it is not clear at all how and under which specific circumstances the power of Cyber Command would be used. See Figure 1.


Figure 1 –– Attack and Defense in Cyberspace. The US Government (NSA’s Cyber Command) is tasked with defending the U.S. Government from cyber attacks. But in case of cyber attacks against important private sector components, including infrastructure, there is no clear role or authority.

As of 2018 Cyber Command should have a 6,200 member force.  It is under the command of the U.S. Strategic Command, which also is in charge of the USA’s nuclear weapons. This number, 6,200 might possibly be only a fraction of the true size of Cyber Command, considering that it is common practice in  many parts of the U.S. government, including the military, to make extensive use of outsourcing and subcontractors to get its work done. If the government employee/subcontractor ratio for other parts of the government is applied to Cyber Command, then a force of 27,900 might be more realistic.

Since it operates under the auspices of the National Security Agency (NSA), Cyber Command has responsibility for protecting the communications, including data communications and thus data processing and ICT infrastructure, of the United States Government. Presumably this means that should government ICT infrastructure come under attack from another nation state, Cyber Command could respond. The rules of cyber war are not yet worked out because it is difficult to have a “cyber war”, without any real “war”. And if there is not real “war”, then presumably government weapons would not be used to fight the conflict.

This leaves a vulnerability for the United States. If the private sector, including the USA’s vast infrastructure (electricity, transportation, finance, business process computing, communications, distribution), came under attack, it is not clear that the NSA would respond. Perhaps it has standing orders to aid the private sector, but it is difficult to see how this could happen except through the mechanism of providing warning and advice to victims of cyberattacks.

It is possible that cyber militia might be used by either the private sector or by the government, but there is not much known about this possibility, and in any case, there would be legal and regulatory barriers for this to be done by the government.

This leaves open the challenge of coordination.

Focus and Coordination. Within the U.S. government, as well as the states and local jurisdictions, a large number of fusion centers and other points of shared operational responsibility has been developed and deployed. Everything from response to a chemical biological attack to a full scale nuclear war has been prepared for. There is a particularly vigilant infrastructure in place to handle the aftermath of a severe terrorist attack against any community.  But these centers specialize in different areas: some on electricity, others on public health, terrorism, or a number of other focus area. They have different degrees of cyber defense and response capabilities, if any at all.

But we can be sure that in any cyber emergency, it will be very difficult to coordinate the activities of these many centers and there is no integrated cyber response plan to do so.

Effectiveness Against Cyber Attack

So looking below at Figure 2, we might hypothesize that there is an optimum number of centers of cyber excellence that determines the level of effectiveness against a cyber attack. In the initial stages of build-up, there is a rapid rise in effectiveness.  But if too much is built, the response teams will face increasing difficulty in coordinating their response, and the effectiveness will start to fall, even as investments continue to rise.


Figure 2 – Too much cyber defense might weaken the overall national efforts. Response to cyber attacks are coordinated a various national centers. As the number of these centers increases, the effectiveness of response increases, but never becomes perfect. But it never approaches perfect. At some point further increases in cyber response centers weakens national cyber defense because of the cost of coordination.

Control of the Proliferation of Cyber Weapons

Cyber Arms Control.  Understanding the prospects of cyber arms control must be based on realistic assumptions about nation state motivation. when seeking international agreement, the cardinal rule is that no nation state will support any regime that does not yield it a benefit. So any international convention to control the proliferation of cyber weapons most present some advantage for each nation in acquiescence. A “win-win” scenario, to use popular game theory lingo. So from the point of view of the United States, we must examine if it is possible to identify any specific advantages from such a treaty. Here are a few to consider:

  1. Uncertainty Mitigation. The exchange of information between nation states, even if imperfect (as it certainly will be), will lessen the uncertainty surrounding a potential cyber attack or cyber war.  This is because it will be necessary to keep a tab on the development of new cyber weapons by competing nation states. In addition, an international warning and coordination system for potential cyber war will enable the USA to better allocate the correct forces for the attack. In the absence of mutually exchanged information concerning the cyber weapons arsenals of the USA’s strategic competitors, there will be a tendency to over-build cyber-weapon counter-measures, thus wasting resources, and leading to further uncertainty. Finally, getting an insight into the cyber warfare operations and capabilities of its strategic competitors (China and Russia) will be less problematic and more accurate than obtaining an incomplete picture using traditional espionage and intelligence collection methods. In general, any regime that can lessen uncertainty in cyber war would be a stabilizing factor.
  2. Law Enforcement. International enforcement against cyber-based crime currently faces many serious obstacles. A short list includes: (1) extradition of cyber-criminals from one jurisdiction to another; (2) rules of evidence that are internationally recognized; (3) attribution of criminality and responsibility; and (4) variances in definitions of crimes. By putting in place the type of government-to-government coordination required for a successful cyber arms control regime, part of its function, by necessity, would be to distinguish nation-state originating weapons from other cyber abuses. Since these other abuses are by default the responsibility of criminals, this would enhance international coordination and law enforcement to bring them to justice.


Cyber Deterrence Theory – Why Cyber Weapons Are More Dangerous Than Nuclear Weapons

Deterrence in the Nuclear Age

Deterrence is found between nation states when an aggressive action by any nation is discouraged because of doubt or fear of the consequences.


Figure 1 – Cover page of the 1958 RAND report on Deterrence written by Bernard Brodie.

The concept of deterrence was created in the late 1950’s by analysts such as Bernard Brodie who was working at the RAND Corporation “think tank” in Santa Monica, California. He and his colleague Herman Kahn was developing a system of theoretical frameworks that could be used to understand the implication of thermonuclear war using Intercontinental Ballistic Missiles (ICBMs) and other delivery systems.

At that point in time, the United States was reeling from the psychological shock of Sputnik 1 (Простейший Спутник-1), a satellite that the Soviet Union placed into an elliptical Earth orbit in October 1957.  The “Space Race” was on, and the Soviet Union had a substantial lead over the United States.

Although Sputnik was designed to orbit the earth and emit a 20 and 40 MHz signal, the shock to the United States was not caused merely by the Soviet Union’s ability to place a small radio transmitter in orbit to broadcast for 21 days.

This was 1957, there were no computers, no electronic calculators.  All mathematical calculations were made using slide rules. There was no CAD-CAM; all engineering work was done on paper. Engineers used drafting tables.

The shock was in the accuracy. If the Soviet Union could manage to be precise enough to place a small radio broadcasting satellite into a stable orbit, then it had the skills to be accurate enough to send a thermonuclear weapon to the mainland of the United States. The accuracy was enough to place Sputnik into orbit, and enough to drop an atomic bomb on a U.S. metropolitan area.

Shortly thereafter, the United States and the Soviet Union greatly increased production of nuclear weapons and ICBMs. The number of atomic bombs became so great that it would have been possible for the Soviet Union easily to extinguish all life on planet earth.

That is, in the mid-1960s, the United States had deployed approximately 31,000 nuclear bombs. By the late 1980s, the Soviet Union had deployed 40,000 nuclear bombs.  Considering that there are only 260 or so large cities in the United States, the threat of 40,000 nuclear bombs was overwhelming.

In today’s world, people do not think much about nuclear weapons. Countries such as Iran that are engaged in violating its treaty obligations and developing nuclear weapons argue that they have a “right” to do so, but they have no such right.

This is because nuclear weapons are too dangerous to allow them to spread. Here is an example that frequently was given by Professor Geoffrey Kemp in his lectures at the Fletcher School of Law and Diplomacy. For some reason, he always like to use the MIT swimming pool in his story.

“It is an October day. The beautiful New England sky is clear and dark blue. Not a cloud to be seen. A nuclear weapon explodes approximately 20,000 feet above the MIT swimming pool. What would be the consequences? Let us first think of only the heat. Take a compass and a map. Draw a circle around the MIT swimming pool. Go out 235 miles as a radius in every direction. The heat of the explosion alone would cause everything within that circle to spontaneously burst into flames. And that is before any of the blast effects were felt.”

With a radius of 235 miles, this blast area would be 173,494 square miles. The United States is 3.797 million square miles. Incredibly, it would take the Soviet Union only 22 weapons to burn the entire surface of the United States. That would leave it with 39,980 weapons remaining. We could do the same math with the Soviet Union. With its size of 8.65 million square miles, it would cost the United States only 50 bombs to burn the entire surface of the Soviet Union, leaving it with 30,950 weapons remaining.

Now these calculations could be a little off, but you should get the point.

So in the nuclear age the theoretical question being considered in sunny Santa Monica was how to avoid having the United States destroyed. The larger question was how to avoid having the entire earth incinerated.

Mutually Assured Destruction (MAD)

Eventually the superpowers settled on a type of balance of power. It was not the “classic” balance of power that had been re-established at the Congress of Vienna (Wiener Kongress) in 1815 after the trauma of the Napoleonic wars.  The nuclear age was to have a different balance of power. Each nation would know that if it attacked another, then there would remain enough thermonuclear weapons on the other side to assure that the attacker themselves would be destroyed in retaliation.

This is guaranteed by the “triad” of delivery systems: The Air Force, the fleet of Intercontinental Ballistic Missiles (ICBMs), and the Navy’s Submarine Launched Ballistic Missiles (SLBMs). In a worst case scenario, if the entire continent of the United States were incinerated and every human being killed, still the U.S. Navy’s nuclear submarine fleet hiding always in the ocean would be able to launch a devastating counter-strike against the Soviet Union. And the USSR built a submarine fleet to provide it with the same retaliatory capability.

And that is the essence of “deterrence”. Neither side will attack the other with nuclear weapons, because it is reasonable certain that it will get the same back. Like the final statement of the computer in the movie “War Games”, the best move is not to play at all.

So we should be thankful about nuclear weapons. Because they have kept the peace and ensured that there was no outbreak of war between the superpowers.

Applying Deterrence Theory to Cyber Warfare

Is it possible to have deterrence in the cyber arena?  First, we need to think about a few of the differences between nuclear and cyber weapons.

Destructive Capability. The destructive capabilities of nuclear weapons are well known. They have kinetic blast effects, heat effects, and radiation poisoning effects. They are designed to destroy infrastructure, or other weapons systems. The calculation of destructive capabilities is well understood. The “Circular Error Probable” (CEP) value which measures the probability that the weapon will explode within a certain range of its target is almost as important as the strength of the blast, since proximity can leverage the inverse square law. In contrast, cyber weapons can have both logical and kinetic effects. By “logic” effects, we refer to destruction or alteration of programmable code or other data, and then the secondary “downstream” effects that are generated. In cyber, a “kinetic” effect is a downstream effect of a cyber event. For example, the Stuxnet virus is said to have caused Siemens programmable logic controllers to trigger a destruction of the Iranian centrifuge machines.

Attack Focus. In nuclear weapons, the kinetic, heat, and radiation effects are centered around the impact point of the explosion. Anything, any system either mechanical or biological within the effect range will sustain damage. The degree of damage falls off exponentially as we move away from the site of the explosion. In contrast, cyber weapons do not necessarily have a point of impact. They can have similar effects across very large geographical areas. As long the system is compatible in logic with the cyber weapon’s capabilities, they be anywhere.  So for example, a nuclear weapon can destroy an electricity production complex; but a cyber weapon can cause destruction or disruption across a geographically distributed electricity or banking grid. A nuclear weapon will destroy everything within its range; a cyber weapon can reap massive destruction to a specific system, but leave everything else in the area untouched.

Visibility of Attack Delivery Phase. Apart from a hidden “suitcase bomb”, the delivery of strategic nuclear weapons is visible. Aircraft (strategic bombers) and ICBMs or nuclear cruise missiles can be detected by radar, although stealth aircraft are more difficult to see. Of course the “reaction time” for responding is a considerable problem. For an SLBM attack against the United States, there may be only 10 minutes or so to respond. The visibility, however limited, probably allows the receiving state to determine the origin of the weapon, and this enables it to target its response and retaliation. So there is a delivery phase of a nuclear attack. With cyber weapons, this delivery phase is not visible. There are two aspects to this: First, it is possible to disguise cyber weapons so that even when they are identified, their source is not known; Second, an additional factor is that with nuclear weapons, there is a delivery time governed by the physics of moving a bomb across the planet. With cyber weapons, delivery takes place more or less instantaneously.

Covert Cyber Weapons Caches. During the Cold War, it was said that the Soviet Union had pre-positioned caches of arms or other destructive items in various places across the United States. These were designed to be available to Non-Official Cover (NOC) agents who would be “activated” in case of a war. This tactic is also said to have been used by the Soviet Union against European targets in the interwar period, and also by the United States. With cyber weapons, the pre-positioning of malicious code means in essence that the payload already has been delivered. There is no delivery phase, and it certainly is not visible. So it is reasonable to assume that any cyber-superpower already has positioned significant numbers of cyber weapons inside the infrastructure of its potential enemies. Therefore, the weapons should be able to attack without warning.

Destructive Effects. Nuclear weapons: (1) kinetic; (2) heat; (3) radiation poisoning. Cyber weapons: (1) kinetic; (2) logical.

Level of Uncertainty. The level of uncertainty for strategists is greater for cyber than for nuclear. This not to discount the considerable uncertainty surrounding a scenario of thermonuclear war. Nevertheless, we can say that the Mutually Assured Destruction (MAD) principle means we can be sure that if a major confrontation breaks out, then both sides will sustain unacceptable levels of damage, regardless of who was the aggressor. In contrast, there is no such certainty with cyber weapons.

To quote Brodie:

“It is a truistic statement that by deterrence we mean obliging the opponent to consider, in an environment of great uncertainty, the probable cost to him of attacking us against the expected gain thereof.” (p.11)

If the Russian Federation makes a decision to launch a cyber attack against the United States, then given the great amount of uncertainty, how can it estimate what the U.S. response will be, and how much “cost” or damage it will be required to suffer, and after that, what will be its expected gain? The same is true for the United States. It if decides to launch a cyber attack against China, then how does it estimate what the Chinese are capable of doing in retaliation, and after that, how can it assess the potential gain?

Conclusion – Cyber Weapons Are More Dangerous Than Nuclear Weapons

Cyber War is Mutually Un-Assured Destruction (MUD). We only can  conclude that the level of uncertainty is so great in cyber that there is no assurance of destruction of the attacking party, and no way to estimate how much “cost” would need to be paid by the attacker as it weathers the retaliation of its victim; thus there is no way to understand whether or not there would be any potential gain.

So the implication of this is that cyber weapons appear to be more dangerous that nuclear weapons because of the level of uncertainty inherent in their deployment and potential use. This means by extension that at least for the time being, the concept of “balance of cyber power” is not a feasible concept.

In future posts, we will examine a number of cyber-war scenarios.









The Wikileaks Vault 7 “Year Zero” Leak

ON MARCH 7th, 2017, Wikileaks released a giant file of 8,761 documents from the U.S. Central Intelligence Agency (CIA). Wikileaks called the leak the “first full part of the series “Year Zero”.  The documents were stolen from a network that supposedly was “isolated” within the CIA itself.


Figure 1: The structure of the CIA’s cyber weapons development group, according to Wikileaks.

What is surprising about the leak to Wikileaks is that it contains not only documentation regarding CIA development activities, but also the actual code (“several million lines of code”) used in these various exploits.

It appears that these cyber weapons allow almost any electronic device to be hacked for purposes of intelligence collection.

Since there already is a great deal of publicity regarding these weapons, there is no need to discuss them here.

Effect on U.S. National Security

If the leak is genuine, then this is another giant blow to the intelligence community.  It will make it easier now for criminals, terrorists, human traffickers, heroin cartels or others, including other nation states to deploy cyber weapons against the United States. It also will allow these enemies to avoid detection.

It further will erode faith in U.S. technology exports and harm U.S. technology companies.

The persons who leaked the information are traitors, and what they have done will result in people being killed or otherwise harmed. If they are found, then they should be prosecuted.

Wikileaks reports that approximately 22,000 IP addresses located within the United States were targets of these cyber weapons.

The Danger of Cyber Weapons Proliferation

As if they are some type of hero, the leaker wishes “to initiate a public debate about the security, creation, use, proliferation and democratic control of cyberweapons.”

This blogger agrees that we should have a debate, but inflicting severe damage against the intelligence community is hardly the way to do it. An alternative debate might be whether or not the leaker should be shot. 

In any case, this leak emphasizes the following dangers of cyber proliferation:

  1. Unlike the difficulties found in nuclear proliferation, cyber weapons can be dispersed and moved around the world in seconds.
  2. It is impossible to determine who has access to cyber weapons once they are released.
  3. Cyber weapons are asymmetric in nature; that is, their cost is a tiny fraction of the value of damage they can cause.

The Need for Cyber Arms Control

This unfortunate compromise in U.S. national security again emphasizes the need for the nations of the world to begin the process of creating an international convention for cyber arms control.  The proliferation of cyber weapons needs to be stopped before there is a tremendous disaster.